Select Page

Product Description

UMC is the industry leader in gearbox technology. Over our 40 year history we have introduced many industry changing gearboxes such as the patented TNT gearbox, the 740, the 760, the 775 and more. We continue to define and redefine industry standards for gearbox performance, quality, features and technology. Our gearboxes are purpose built to do the job. Never over-engineered.

UMC stands behind its products and is committed to manufacturing the best products for a global market.

740-U 50:1 Ratio

Designed for longer spans, larger wheels, and heavier towers.
 

Features and Benefits

  • 2.25 inch output shaft
  • 50:1 gear ratio
  • Cartridge input and output seals
  • Larger input bearings
  • Input shaft guard
  • External seal protectors for input and output seals
  • Top oil fill plug
  • Universal mounting pattern
  • Full cycle expansion chamber with stainless steel cover
  • Filled with extreme pressure worm gear oil
  • Steel output shaft and input shaft
  • Tapered roller bearings
  • Includes carriage bolts and nuts
  • Dual ended input shaft

740-UV 52:1 Ratio
Designed for longer spans, larger wheels and heavier towers where an extended output shaft is required.
 This gearbox has all the same capabilities, features and benefits that the standard 740 has with a few tweaks. The output shaft is extended, the gear ratio is 52:1 and the input shaft is made of ductile iron with a 25° pressure angle allowing this gearbox to be used on center CHINAMFG and lateral move/ linear systems that come standard with these specifications.

Features and Benefits

  • 2.25 inch extended output shaft
  • 52:1 gear ratio with 25° pressure angle
  • Cartridge input and output seals
  • Larger input bearings
  • Input shaft guard
  • External seal protectors for input and output seals
  • Top oil fill plug
  • Universal mounting pattern
  • Full cycle expansion chamber with stainless steel cover
  • Filled with extreme pressure worm gear oil
  • Steel output shaft and ductile iron input shaft
  • Tapered roller bearings
  • Includes carriage bolts and nuts
  • Dual ended input shaft

 

760-UV Gearbox

Designed for corner systems and lateral move carts where an extended output shaft is required

 

Growers typically use UMC’s 760-UV gearbox for the most extreme applications where an extended output shaft is required. The gearbox is designed for higher annual hours of operation while handling the heavy loads experienced on corner systems and lateral move carts as well as the most extreme field conditions where wheel rutting is prominent, soil is heavy, and tower weights are higher.

 

The UMC 760-UV final drive gearbox is our largest and most durable gearbox with an extended output shaft. It features a larger-diameter bull gear than the standard 740 series to handle 20% higher torque. It also features a 2.5″ output shaft to accommodate more overhung load. It is designed for use on center pivots, corners, lateral move/ linear irrigation systems and carts where a 52:1 gear ratio and extended output shaft are standard specifications.

Features and Benefits

  • 2.5″ output shaft
  • 52:1 gear ratio with a 25° pressure angle
  • Unique dual input and output seal design
  • 20% more torque capacity than the standard 740
  • Bronze gear optional
  • Larger input bearings
  • Input shaft guard
  • External seal protectors for input and output seals
  • 11-Bolt mounting pattern
  • Full cycle expansion chamber with aluminum cover
  • Filled with extreme pressure worm gear oil
  • Steel output shaft and ductile iron input shaft
  • Tapered roller bearings
  • Includes carriage bolts and nuts
  • Dual ended input shaft

TNT-2 Gearbox

Designed for applications where the irrigation system may need to be towed

 

This gearbox is the perfect solution for a towable irrigation system. Growers typically prefer this gearbox over a gearbox with a towable hub. Simply disengage the worm and tow your system to its working location, then re-engage the worm and you are ready to run. The CX coupler is the perfect compliment for the TNT-2 gearbox due to the ability to control coupler disengagement at the gearbox.

 

The UMC patented TNT-2 final drive gearbox is designed specifically for applications where a center CHINAMFG or lateral move/ linear irrigation system needs to be towed. The gearbox provides the ability to disengage the worm gear and allows users to move systems from 1 area to another without requiring a Towable Hub add on.

Features and Benefits

  • 2.25″ output shaft
  • 50:1 gear ratio
  • Dual input seals with triple lip output seals
  • Bronze gear optional
  • Input shaft guard
  • External seal protectors for input and output seals
  • Top oil fill plug
  • 11-Bolt mounting pattern
  • Full cycle expansion chamber with stainless steel cover
  • Filled with extreme pressure worm gear oil
  • Steel output shaft and input shaft
  • Tapered roller bearings
  • Includes carriage bolts and nuts
  • Dual ended input shaft

 
 

760-UV Bronze Gearbox

Designed for the most extreme conditions where an extended output shaft is required.

 

Growers typically use The UMC 760-UV bronze gearbox for the most extreme applications where an extended output shaft is required. The gearbox is designed for higher annual hours of operation while handling the heavy loads experienced on corner systems and lateral move carts as well as the most extreme field conditions where wheel rutting is prominent, soil is heavy, and tower weights are higher.

 

The UMC 760-UV Bronze final drive gearbox is our largest and most durable gearbox with an extended output shaft designed for the most extreme growing conditions. It features a high strength aluminum bronze bull gear and a heat treated steel worm gear giving it a much higher load capacity than the standard 760-UV. Additionally, this gear combination greatly reduces gear wear, extending the useful life of the gearbox. It also features a 2.5″ output shaft to accommodate more overhung load. It is designed for use on center pivots, corners, lateral move/ linear irrigation systems and carts where a 52:1 gear ratio and extended output shaft are standard specifications.

Features and Benefits

  • 2.5″ output shaft
  • 52:1 gear ratio with a 25° pressure angle
  • Unique dual input and output seal design
  • Bronze Gear
  • Heat Treated Steel Worm Gear
  • Larger input bearings
  • Input shaft guard
  • External seal protectors for input and output seals
  • 11-Bolt mounting pattern
  • Full cycle expansion chamber with aluminum cover
  • Filled with extreme pressure worm gear oil
  • Steel output shaft
  • Tapered roller bearings
  • Includes carriage bolts and nuts
  • Dual ended input shaft
  • Also Available Assembled in the USA

UMC is the industry leader in gearbox technology. Over 37 year history they have introduced many industry changing gearboxes such as the patented TNT gearbox, the 740, the 760, the 775 and more. CHINAMFG continue to define and redefine industry standards for gearbox performance, quality, features and technology. CHINAMFG gearboxes are purpose built to do the job. Never over-engineered.UMC stands behind its products and is committed to manufacturing the best products for a global market.

 

Application: Motor, Agricultural Machinery, Agricultural
Function: Speed Reduction
Hardness: Hardened
Type: Worm and Wormwheel
Manufacturing Method: Cast Gear
Changes Way: Mixed
Customization:
Available

|

Customized Request

worm gearbox

Self-Locking Properties in a Worm Gearbox

Yes, worm gearboxes exhibit self-locking properties, which can be advantageous in certain applications. Self-locking refers to the ability of a mechanism to prevent the transmission of motion from the output shaft back to the input shaft when the system is at rest. Worm gearboxes inherently possess self-locking properties due to the unique design of the worm gear and worm wheel.

The self-locking behavior arises from the angle of the helix on the worm shaft. In a properly designed worm gearbox, the helix angle of the worm is such that it creates a mechanical advantage that resists reverse motion. When the gearbox is not actively driven, the friction between the worm threads and the worm wheel teeth creates a locking effect.

This self-locking feature makes worm gearboxes particularly useful in applications where holding a load in position without external power is necessary. For instance, they are commonly used in situations where there’s a need to prevent a mechanism from backdriving, such as in conveyor systems, hoists, and jacks.

However, it’s important to note that while self-locking properties can be beneficial, they also introduce some challenges. The high friction between the worm gear and worm wheel during self-locking can lead to higher wear and heat generation. Additionally, the self-locking effect can reduce the efficiency of the gearbox when it’s actively transmitting motion.

When considering the use of a worm gearbox for a specific application, it’s crucial to carefully analyze the balance between self-locking capabilities and other performance factors to ensure optimal operation.

worm gearbox

How to Calculate the Input and Output Speeds of a Worm Gearbox?

Calculating the input and output speeds of a worm gearbox involves understanding the gear ratio and the principles of gear reduction. Here’s how you can calculate these speeds:

  • Input Speed: The input speed (N1) is the speed of the driving gear, which is the worm gear in this case. It is usually provided by the manufacturer or can be measured directly.
  • Output Speed: The output speed (N2) is the speed of the driven gear, which is the worm wheel. To calculate the output speed, use the formula:

    N2 = N1 / (Z1 * i)

Where:
N2 = Output speed (rpm)
N1 = Input speed (rpm)
Z1 = Number of teeth on the worm gear
i = Gear ratio (ratio of the number of teeth on the worm gear to the number of threads on the worm)

It’s important to note that worm gearboxes are designed for gear reduction, which means that the output speed is lower than the input speed. Additionally, the efficiency of the gearbox, friction, and other factors can affect the actual output speed. Calculating the input and output speeds is crucial for understanding the performance and capabilities of the worm gearbox in a specific application.

worm gearbox

Types of Worm Gear Configurations and Their Uses

Worm gear configurations vary based on the arrangement of the worm and the gear it engages with. Here are common types and their applications:

  • Single Enveloping Worm Gear: This configuration offers high torque transmission and efficiency. It’s used in heavy-duty applications like mining equipment and industrial machinery.
  • Double Enveloping Worm Gear: With increased contact area, this type provides higher load capacity and improved efficiency. It’s used in aerospace applications, robotics, and precision machinery.
  • Non-Throated Worm Gear: This type has a cylindrical worm without a throat. It’s suitable for applications requiring precise motion control, such as CNC machines and robotics.
  • Throated Worm Gear: Featuring a throat in the worm, this configuration offers smooth engagement and higher load capacity. It’s used in conveyors, elevators, and automotive applications.
  • Non-Modular Worm Gear: In this design, the worm and gear are a matched set, resulting in better meshing and efficiency. It’s utilized in various industries where customization is essential.
  • Modular Worm Gear: This type allows interchangeability of worm and gear components, providing flexibility in design and maintenance. It’s commonly used in conveyors, mixers, and material handling systems.

Selecting the appropriate worm gear configuration depends on factors such as load capacity, efficiency, precision, and application requirements. Consulting gearbox experts can help determine the best configuration for your specific needs.

China Standard CZPT 740U gearbox on Western center CZPT   gearbox drive shaft	China Standard CZPT 740U gearbox on Western center CZPT   gearbox drive shaft
editor by CX 2023-10-10